Clark, S.D., Lomax, N., Morris, M.A., Pontin, F., Birkin, M. (2021). Clustering Accelerometer Activity Patterns from the UK Biobank Cohort. Sensors. 21(24)8220. https://www.mdpi.com/1424-8220/21/24/8220
Oldroyd, R.A., Morris, M.A., Birkin, M. (2021). Predicting food safety compliance for informed food outlet inspections: a machine learning approach. International Journal of Environmental Research and Public Health. 18(23):12635. https://pubmed.ncbi.nlm.nih.gov/34886362/
Jenneson, V., Clarke, G.P., Greenwood, D.C., Shute, B., Tempest, B., Rains, T., Morris, M.A. (2022). Exploring the Geographic Variation in Fruit and Vegetable Purchasing Behaviour Using Supermarket Transaction Data. Nutrients, 14, 177. https://www.mdpi.com/2072-6643/14/1/177
Ross, S., Breckenridge, G., Zhuang, M., Manley, E. (2021). Household visitation during the COVID-19 pandemic. Sci Rep 11, 22871. https://doi.org/10.1038/s41598-021-02092-7
Jenneson, V.L., Pontin, F., Greenwood, D.C., Clarke, G.P., Morris, M.A. (2021). A systematic review of supermarket automated electronic sales data for population dietary surveillance. Nutrition Reviews. https://doi.org/10.1093/nutrit/nuab089
Pontin, F., Lomax, N., Clarke, G., Morris, M.A. (2021). Characterisation of Temporal Patterns in Step Count Behaviour from Smartphone App Data: An Unsupervised Machine Learning Approach. Int. J. Environ. Res. Public Health. 18 (11476). https://doi.org/10.3390/ijerph182111476
Spooner, F., Abrams, J.F, Morrissey, K., Shaddick, G., Batty, M., Milton, R., Dennett, A., Lomax, N., Malleson, M., Nelissen, N., Coleman, A., Nur, J., Jin, Y., Greig, R., Shenton, C., Birkin, M. (2021). A dynamic microsimulation model for epidemics. Social Science & Medicine. 291 (114461) https://doi.org/10.1016/j.socscimed.2021.114461
Beckers, J., Birkin, M., Clarke, G., Hood, N., Newing, A. and Urquhart, R. (2021). Incorporating E‐commerce into Retail Location Models. Geographical Analysis. https://doi.org/10.1111/gean.12285
Ye, Z., Clarke, G. and Newing, A. (2021). Estimating small-area demand of urban tourist for groceries: The case of Greater London. Journal of Retailing and Consumer Services, [online] 58, p.102263. https://doi.org/10.1016/j.jretconser.2020.102263
Heinberg, M., Liu, Y., Huang, X. and Eisingerich, A.B. (2020). EXPRESS: A Bad Job of Doing Good: Does Corporate Transparency on a Country and Company Level Moderate Corporate Social Responsibility Effectiveness? Journal of International Marketing, p.1069031X2098187. https://doi.org/10.1177%2F1069031X20981870
Clark, S., Morris, M., Lomax, N. and Birkin, M. (2021). Can a data driven obesity classification system identify those at risk of severe COVID-19 in the UK Biobank cohort study? International Journal of Obesity. https://doi.org/10.1038/s41366-021-00891-6
Lomax, N. (2021). Estimating household mobility using novel big data. In: M. Birkin, G. Clarke, J. Corcoran and R. Stimson, eds., Big Data Applications in Geography and Planning. Edward Elgar Publishing, pp.25–42.
Pontin, F., Lomax, N., Clarke, G. and Morris, M.A. (2021). Socio-demographic determinants of physical activity and app usage from smartphone data. Social Science & Medicine, 284, p.114235. https://doi.org/10.1016/j.socscimed.2021.114235
Castellanos, S., Grant-Muller, S. and Wright, K. (2021). Technology, transport, and the sharing economy: towards a working taxonomy for shared mobility. Transport Reviews, pp.1–19. https://doi.org/10.1080/01441647.2021.1968976
Harrison, G., Grant-Muller, S.M. and Hodgson, F.C. (2021). A review of transport-health system dynamics models. Journal of Transport & Health, 22, p.101138. https://doi.org/10.1016/j.jth.2021.101138